Recommender Systems Specialization

开始时间: 12/21/2023 持续时间: Approximately 5 months to complete Suggested pace of 3 hours/week

所在平台: Coursera专项课程

课程类别: 计算机科学

大学或机构: CourseraNew



第一个写评论        关注课程


A Recommender System is a process that seeks to predict user preferences. This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative filtering techniques, as well as advanced topics like matrix factorization, hybrid machine learning methods for recommender systems, and dimension reduction techniques for the user-product preference space. This Specialization is designed to serve both the data mining expert who would want to implement techniques like collaborative filtering in their job, as well as the data literate marketing professional, who would want to gain more familiarity with these topics. The courses offer interactive, spreadsheet-based exercises to master different algorithms, along with an honors track where you can go into greater depth using the LensKit open source toolkit. By the end of this Specialization, you’ll be able to implement as well as evaluate recommender systems. The Capstone Project brings together the course material with a realistic recommender design and analysis project.

推荐人系统专业化:推荐人系统是一个旨在预测用户偏好的过程。本专业涵盖了推荐系统中的所有基本技术,从非个性化和项目关联推荐器到基于内容的协作过滤技术,以及高级主题,例如矩阵分解,推荐系统的混合机器学习方法和降维技术用户产品偏好空间。 该专长旨在为希望在工作中实施协作过滤等技术的数据挖掘专家以及希望对这些主题更加熟悉的数据知识型营销专家提供服务。 这些课程提供基于电子表格的交互式练习,以掌握不同的算法,并提供荣誉轨道,您可以在这里使用LensKit开源工具包进行更深入的研究。 在本专业课程结束时,您将能够实施和评估推荐系统。顶峰项目将课程资料与现实的推荐者设计和分析项目结合在一起。


Course Link:

Name:Introduction to Recommender Systems: Non-Personalized and Content-Based

Description:Offered by University of Minnesota. This course, which is designed to serve as the first course in the Recommender Systems specialization, ... Enroll for free.

Course Link:

Name:Nearest Neighbor Collaborative Filtering

Description:Offered by University of Minnesota. In this course, you will learn the fundamental techniques for making personalized recommendations ... Enroll for free.

Course Link:

Name:Recommender Systems: Evaluation and Metrics

Description:Offered by University of Minnesota. In this course you will learn how to evaluate recommender systems. You will gain familiarity with ... Enroll for free.

Course Link:

Name:Matrix Factorization and Advanced Techniques

Description:Offered by University of Minnesota. In this course you will learn a variety of matrix factorization and hybrid machine learning techniques ... Enroll for free.

Course Link:

Name:Recommender Systems Capstone

Description:Offered by University of Minnesota. This capstone project course for the Recommender Systems Specialization brings together everything ... Enroll for free.



明尼苏达大学的推荐系统专项课程系列(Recommender Systems Specialization),这个系列由4门子课程和1门毕业项目课程组成,包括推荐系统导论,最近邻协同过滤,推荐系统评价,矩阵分解和高级技术等,感兴趣的同学可以关注:Master Recommender Systems-Learn to design, build, and evaluate recommender systems for commerce and content.


推荐系统 推荐系统课程 推荐系统导论 最近邻协同过滤 推荐系统评价 矩阵分解 协同过滤