Çok Değişkenli Fonksiyonlarda Türev ve Entegral

开始时间: 04/22/2022 持续时间: 7 weeks

所在平台: CourseraArchive

课程类别: 数学

大学或机构: Koç University

授课老师: 其他

课程主页: https://www.coursera.org/course/multivar

课程评论:没有评论

第一个写评论        关注课程

课程详情

Türkçe
Ders çok değişkenli fonksiyonlarda türev ve entegral kavramlarını geliştirmek ve bu konulardaki problemleri çözme yöntemlerini sunmaktadır. Ders gerçek yaşamdan gelen uygulamaları da tanıtmaya önem veren “içerikli yaklaşımla” tasarlanmıştır. 

Konuların sunumunda “ne?” ve “nasıl?” sorularının yanısı sıra, “neden?” ve “nerede?” sorularına da yanıt aranacaktır. İlk iki soru “tanım” ve “kanıt”ları oluşturuyor. Diğer iki soru da, konuların nereden geldiğini ve nerede kullanılacağına yanıt veriyor.

Matematikte konuları bir düzen içinde hazır cevaplar vererek geliştirmek (Aristo yöntemi) önemlidir. Bunun yanı sıra sorular sorup, öğrenciyle birlikte yanıtlamak da öğrenim için etkin bir yöntem (Sokrat yöntemi). Buradaki sunumda uygun durumlarda Sokrat yönteminden yararlanmaya özen gösterilmektedir. 

Niçin türev ve entegral? Yaşamın iki önemli göstergesi değişim ve birikimdir. Değişim farklarla ve birikim de toplamalarla tanımlanır. Özünde, diferansiyel hesap, ilkokuldan beri öğrenip uyguladığımız çıkarma ve toplama işlemlerinin bir uzantısıdır. Diferansiyel hesaptaki yeni kavram anlık değişim ve değişken girdilerden oluşan birikimin belirlenebilmesidir. Bu iki kavram sonsuz küçük değerleri gerektirir. İstenen anlık değişiklik ve birikim sonsuz küçüklerin sıfır olduğu limitte ulaşılan değerlerdir. Limit diferansiyel hesabın dayandığı temel kavramdır.

Bir fonksiyon, bir girdi (bağımsız değişken) ile çıktı (bağımlı değişken) arasındaki ilişkidir. Bağımlı değişkendeki değişimin, bağımsız değişkendeki değişime oranı “türev” kavramını getirir. Birikim de, örneğin kütleyi, elektrik yükünü, enerjiyi, uzunluğu, alanı, hacmi veren fonksiyonların bağımsız değişkendeki sonsuz küçük değerlerle ağırlıklı toplamıdır. Bu işlem “entegral” kavramıdır. İlkokuldan beri toplama ve çıkarmanın birbirinin tersi ve tamamlayıcısı olduğunu biliyor ve kullanıyoruz. Bu ilişki türev ve entegralde de geçerlidir. Diferansiyel hesabın iki “temel teoremi” bu ilişkiyi kanıtlar: Bir fonksiyonun türevinin entegrali, başlangıçtaki fonksiyonu verir. Benzer olarak, bir fonksiyonun entegralinin türevi de başlangıçtaki fonksiyonu verir. Bu temel sonuçlar “Tek değişkenli fonksiyonların diferansiyel hesabı” dersinden biliniyor. Bu ders aynı konuları temel alarak, kavram ve hesaplama yöntemlerini çok değişkenli fonksiyonlara geliştiriyor. 

Niçin çok değişkenli fonksiyonlar? Çünkü yaşamın gerçek konuları bir, iki veya üç konum ve bir de zaman değişkeniyle belirleniyor. Ders tek değişkenli fonksiyonlarda öğrendiklerimizin üzerine yapılanıyor. Her yeni konuya başlarken, tek değişkenli fonksiyonlardaki eşdeğer durum hatırlatılacaktır. Bu nedenle önceki dersin konularını hatırlatma, öğrenciye eksik bildiklerini tamamlama ve bildiklerini pekiştirme olanağını da veriyor. Dersin sonunda öğrenciler çok boyutta düşünebilme becerisini geliştirecek, çevreyi ve insan yapısı olan teknolojiyi gerçekçi anlamda kavrayabilecektir. 

(Kaynak: Attila Aşkar, “Çok değişkenli fonksiyonlarda türev ve entegral”. Bu kitap dört ciltlik dizinin ikinci cildidir. Dizinin diğer kitapları Cilt 1 “Tek değişkenli fonksiyonlarda türev ve entegral”, Cilt 3: “Doğrusal cebir” ve Cilt 4: “Diferansiyel denklemler” dir.

English

The course develops the concepts of derivatives and integrals of functions of several variables, and the tools for doing the relevant calculations. The course is designed with a “content based” approach, i. e. by solving examples, as much as possible from real life situations. The “why” and “where“ of the topics are discussed, as much as the “what” and the “how”. The answers to the latter are the “definitions” and “proofs”, while the answers to the first two tell the reason for studying a topic, and the areas where such ideas are used.

The transfer of knowledge through an organized deductive process plays an important role in mathematics (Aristotelian approach). An interactive communication between the teacher and the student through posing questions and answering them leads to an effective method (Socrates’ method). The design of this course will benefit from the latter whenever feasible.

Why do we study derivatives and integrals? Because derivatives express change, and integrals define the cumulative results of many inputs. Change and growth through time or space are two basic aspects of life. Change is expressed with the difference between two situations, and the cumulative result of many inputs is an additive process. Thus basically, calculus is an extension of what we all learn as early as first grade as addition and subtraction. Calculus enables us to define and calculate instantaneous changes and growth by continuously varying inputs. Instantaneity of the changes and variability of the inputs are handled by infinitesimal quantities. The final results are obtained in the limit where the infinitesimal changes become zero. The limit is the central concept of calculus.

A function defines the relationship between the inputs, which are the independent variables, and outputs which are the dependent variables. The ratio of the infinitesimal changes in the dependent variable to those of the independent variable leads to the concept of the “derivative”. Similarly, the cumulative outputs of entities such as matter, energy, area, surface, volume, etc. are calculated by the sum of the dependent variable weighted by the changes in the independent variable. This operation leads to the concept of “integral”. Just like in Grade One, where we observed that addition and subtraction are the inverses of each other, so are integral and derivative. This complementarity between the derivative and integral is expressed by the two “fundamental theorems of calculus”. All this is studied in the “Calculus of Single Variable Functions”.

Why multivariables? Because real life problems involve several variables. Our environment is defined by three space variables and phenomena evolve in terms of a fourth which is time. People- made phenomena require many more variables. The course offered here is built on the knowledge of calculus of single variable functions and extends the concepts and techniques to multivariable functions. The concepts and techniques are, in most cases, natural extensions and generalizations from those in single variable functions. Hence, each topic will start the review of the fundamental concepts and calculation techniques from the calculus of one variable functions. This review is an opportunity to supplement what a student missed in the earlier course on single variables, while advancing into relevant problems from real life that involve more than one variable.

(Source: Attila Aşkar, Calculus of Multivariable Functions, Volume 2 of the set of Vol1: Calculus of Single Variable Functions, Volume 3: Linear Algebra and Volume 4: Differential Equations. All available online starting on January 6, 2014)

课程大纲

Türkçe
Birinci hafta 
Fonksiyon kavramı: girdi – çıktı, bir değerin diğerine gönderimi, çizimler, ve dönüşüm gösterimleri. Çok değişkenli fonksiyonların sınıflandırılması: uzayda eğriler, yüzeyler ve vektör alanları. Fonksiyonların açık, kapalı ve parametrelerle gösterilmesi. Düzlemde karteziyen ve dairesel koordinatların, uzayda karteziyen, silindir ve küresel koordinatların tanıtılması. 

İkinci hafta 
Bir hazırlık: vektörler ve cebirsel işlemler. Düzlemde toplama, bir sayıyla çarpma, iç çarpım ve vektör çarpımı. Bu işlemlerin üç boyuta genellenmesi ve üçlü vektör çarpımları. Bu kavramların geometrideki anlamları ve uygulamaları. Uzayda doğrular ve düzlemler.

Üçüncü ve dördüncü haftalar 
Uzayda eğriler: tek bağımsız ve üç bağımlı değişkenle vektör fonksiyonları. Düzlemdeki temel eğrilerin hatırlatılması ve uzaydaki bazı önemli eğrilerin tanıtılması. Düzlemde eğrilik ile teğet ve dik vektörlerin hatırlatılması. Uzayda eğrilik, burulma ile teğet, dik ve ikili dik (binormal) vektörlerinin tanımlanması. Uzaydaki yörüngelerde hız ve ivme vektörleri. 

Beşinci hafta 
Uzayda yüzeyler: iki bağımsız ve tek bağımlı değişkenle tanımlanan sayısal fonksiyonlar. Yüzeylerin anlaşılması ve temel yüzeylerde çizimler: perspektif görünüm, düzey eğrileri ve kesitlerin çizimi. İkinci derece kuvvet fonksiyonlarıyla verilen temel yüzeyler. Silindir yüzeyleri ve dönel yüzeyler. Mathematica, Mathlab, Ghostview… gibi yazılımlarla bilgisayarda çizimlerden örnekler.

Altıncı hafta 
Bir hatırlatma: tek değişkenli fonksiyonlarda türev ve entegral. İki değişkenli fonksiyonlarda “kısmi türev” ve “iki katlı entegral” in tanıtılması. Kısmi türev ve iki katlı entegralin geometrideki anlamları. Temel tanımları kullanarak temel bazı entegrallerin hesabı.

Yedi, sekiz ve dokuzuncu haftalar 
İki değişkenli sayısal fonksiyonlar tanımlanan yüzeyde teğet düzlem ve diferansiyel. Teğet düzlemi kullanarak bileşik fonksiyonlarda zincirleme türev hesaplama yöntemi. Üç ve “n” değişkenli fonksiyonlarda türev hesaplamaları. Koordinat dönüşümü ve Jakobiyan. Yöne göre türev. Gradyan, diverjans, rotasyonel ve Laplasiyen’in tanımlanması. Fiziki bilimlerdeki dört kısmi türevli denklem: dalga, süzülme (difüzyon), Laplace ve Schrödinger denklemlerinin tanıtılması. Taylor seri açılımları. En büyük ve en küçük değerler: yerel, mutlak ve kısıtlama altında. Kısıtlama altında en iyiyi arama (optimizasyon) ve Lagrange çarpanı yöntemi. Fiziki bilimler, teknoloji ve olasılıklar hesabından uygulama örnekleri.

On, on bir ve on ikinci haftalar 
Düzlemde alan ve eğri uzunluklarının hatırlatılması. Uzayda eğri uzunluğu, yüzey alanı ve hacim hesaplarında sonsuz küçüklerin birleştirilmiş yaklaşımla elde edilmesi. İki katlı entegrallerde hesaplama örnekleri. Karteziyen ve dairesel koordinatlarda hesaplamalar, uygulamalardan örnekler. Sonsuz küçük alan ve Jakobiyan. Uzayda eğri uzunlukları, yüzeyler ve hacimlerden örnekler. Üç katlı entegralleri hesaplama örnekleri. Düzlemde sonsuz küçük alan ve Jakobiyan. Uzaydaki yüzeylerde ve hacimlerde sırasıyla sonsuz küçük alan ve hacim, Jakobiyan. Kartezyen, silindir ve küresel koordinatlarla uzaydaki yüzey ve cisimlerde üç katlı entegral hesaplamaları. Uygulamalardan örnekler.

On üç ve on dördüncü haftalar 
Vektör alanlarında türev ve entegral. Düzlem eğrilerinde entegraller. Entegralin yörüngeye bağlı ve yörüngeden bağımsız olması. Düzlem eğrilerinde birinci ve ikinci Green teoremleri. Düzlemdeki Green teoremlerinden uzayda Green – Gauss ve Stokes teoremlerine yapısal geçiş. Uzayda Green – Gauss ve Stokes teoremleriyle yüzey ve hacim entegralleri. Uzayda Green – Gauss ve Stokes teoremleriyle doğadan temel korunum denklemlerinin elde edilmesi. Kütle, elektrik yükü ve ısı enerjisinin korunmasında uygulamalar.

English

Week One

Concepts for functions as input – output, mapping, graph and transformation. A classification of multivariable functions. Lines and surfaces in space. Vector fields. Representations as explicit, implicit and parametric functions. Cartesian and polar coordinates in the plane. Cartesian, cylindrical and spherical coordinates in space.

Week Two

Preparation on vector algebra. Review of definition and operations of addition, multiplication by a scalar, dot product and vector product in two dimensions and their geometric meaning. Extension of these operations to three dimensions and triple products and geometric meaning. Straight lines and planes in space.

Weeks Three and Four

Space curves through the calculus of vector functions with two and three dependent variables and one independent variable. Examples of space curves. Curvature, unit tangent and normal vectors for planar curves. Arc length, unit tangent, normal and binomial vectors, curvature and torsion of space curves. Applications to trajectories in space to calculate velocity and acceleration.

Week Five

Basic quadratic surfaces in 3-Dimensional space through scalar functions of two variables. General methods for qualitative drawing of surfaces with perspective views, level curves and cuts. Cylindrical surfaces and surfaces of revolution; Create awareness of computer plots showing examples with the usage of software such as Mathematica, Matlab, Ghostview

Week Six

Review of derivatives and integrals in functions of one variable. Extensions from one variable case to functions of two variables: definitions of partial derivatives and double integrals. The meaning of partial derivatives and double integral. Elementary examples using these concepts to calculate partial derivatives and double integrals.

Weeks Seven, Eight and Nine

Techniques of differentiation of scalar functions of two variables with applications from engineering, physical and social sciences. Equation of the tangent plane, the concept of differential. Chain rule for composite functions. Directional derivative. Gradient, divergence, curl and Laplacian. Introducing the four basic equations of the physical sciences: the wave equation, diffusion equation, Laplace equation and Schrodinger equation. Taylor polynomials and series. Minimum- maximum problems in local, absolute and constrained contexts. Optimization problems using Lagrange multipliers. Formal extensions of the above from two to three and “n” variable functions.

Weeks Ten, Eleven and Twelve

Techniques of integration of scalar functions of two and three variables with applications from physical and social sciences. Unified view of the calculation of arc length, double integrals for planar areas, and surfaces in space; triple integrals for calculating volumes in space. Examples of calculations with Cartesian and polar coordinates. Coordinate transformation in the plane and space. Use of Jacobian for calculating infinitesimal area, surface and volume.

Weeks Thirteen and Fourteen

Differentiation and integration of vector fields in two and three components as functions of two and three independent variables. Line integrals, path dependence and independence. Green’s theorems in the plane. Formal extensions of the two planar Green’s theorems respectively to space as Gauss’ divergence theorem and Stokes theorem. Applications to calculate line integrals, show the relation between line integrals and work done. Applications to calculate surface areas and volumes using the Green’s, Gauss’ and Stokes theorems. Demonstration of the use of these theorems to derive the conservation laws for mass, electrical charge and heat conduction.


课程评论(0条)

课程简介

Ders çok değişkenli fonksiyonlarda türev ve entegral kavramlarını geliştirmek ve bu konulardaki problemleri çözme yöntemlerini sunmaktadır. Ders gerçek yaşamdan gelen uygulamaları da tanıtmaya önem veren “içerikli yaklaşımla” tasarlanmıştır.

课程标签

0人关注该课程

主题相关的课程