Monkey_D_Law 评论了课程: Introduction to Computational Thinking and Data Science 2015-12-29 19:24 这门课是Introduction to Computer Science and Programming Using Python后续课。相比于上一门,作业依旧给力,但是这门课干活不多,课程内容安排有点散。
|
Monkey_D_Law 评论了课程: Scalable Machine Learning 2015-08-19 09:47 这门课作为Introduction to Big Data with Apache Spark的后一门课,惊喜感不大。有个week内容完全重复,后面讲解了一些机器学习的内容,讲的还不错。感觉这两门课完全可以合在一起。
|
Monkey_D_Law 评论了课程: Introduction to Computer Science and Programming Using Python 2015-08-19 09:46 之前网易公开课有一样的课,edX开课后,我看评价还不错,所以选了一下。
|
Monkey_D_Law 评论了课程: Java程序设计 2015-08-19 09:45 第一门完成的中文MOOC。
|
Monkey_D_Law 评论了课程: Introduction to Big Data with Apache Spark 2015-07-10 16:11 spark零基础的小白表示,课程很有意思,实例很多,不懂的地方可能要翻翻书。
|
Monkey_D_Law 评论了课程: Maps and the Geospatial Revolution 2015-05-16 15:17 老师语速挺快的,还好视频量不大,课程还补充了很多文字讲义,内容和视频差不多,讲义可能能具体一点。
|
Monkey_D_Law 评论了课程: Programming for Everybody 2014-09-03 19:39 说实话,有点被课程简介忽悠了,当时以为是和数据处理相关的,加上有本配套教材,适合系统的学习python。。后来发现实在是太简单了。很基础很基础,基础到我觉得老师有点啰嗦了。讲function那章时,老师强调一个知识点N遍了,然后自己咕噜了一句:”I probably said that a few too many times。当时笑喷。
|
Monkey_D_Law 评论了课程: Linux System Administration Essentials 2014-08-31 17:07 视频量太少,完全不像是网络公开课的样子,主要是阅读材料,还都是英文的。学到第三章的section2,看满屏的英文,实在看不下去了,就跑去做期末题,发现还蛮简单。个人觉得,上这课还不如好好把鸟哥的书看一下。起码语言上没障碍。 |
Monkey_D_Law 评论了课程: The Data Scientist’s Toolbox 2014-07-09 15:18 略水的一门课,持续时间虽然有四周,但是工作量明显一天能搞定。老师语速比较快,课也讲的一般般,感觉例子要么偏少,要么废话略多。
|
Monkey_D_Law 评论了课程: Introduction to Guitar 2014-06-28 16:05 如果说市面上一般的吉他书教你练招式,那这门课则是教你练内功,没有划弦击弦等招式,更多的从乐理上让你学习了解吉他,让你知道节拍器的重要性,给你讲和弦的由来。
|
Monkey_D_Law 评论了课程: Machine Learning 2014-06-06 20:05 之前在网易公开课上看过Andrew Ng老师的机器学习,满黑板的公式推导让人看的一头雾水,这个coursera的机器学习课虽然也是Andrew Ng老师带的,但是省去了许多数学细节问题,非常适合入门,不过有微积分,线代,概率,matlab基础的话,就更好了
|
Monkey_D_Law 评论了课程: An Introduction to Interactive Programming in Python 2014-06-04 17:29 真的是非常好的一门编程入门课,一共四个老师,Joe Warren老师的语速比较快,感觉是个智商非常高的老师,也非常的幽默。Scott Rixner老师非常和蔼可亲,感觉也是出镜率最高的老师,John Greiner老师语速奇慢无比,还有个好像是华人老师,但是就出现过两次。
|
StatLearning: Statistical Learning (Stanford Online) 3 个评论 关注 开始时间: 04/22/2022 持续时间: 未知 主页: https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about 简介: This is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical). |
Introduction to Recommender Systems (CourseraArchive) 3 个评论 关注 开始时间: 04/22/2022 持续时间: Unknown 主页: https://www.coursera.org/course/recsys 简介: This course introduces the concepts, applications, algorithms, programming, and design of recommender systems--software systems that recommend products or information, often based on extensive personalization. Learn how web merchants such as Amazon.com personalize product suggestions and how to apply the same techniques in your own systems! |
Natural Language Processing (CourseraArchive) 3 个评论 关注 开始时间: 04/22/2022 持续时间: Unknown 主页: https://www.coursera.org/course/nlp 简介: In this class, you will learn fundamental algorithms and mathematical models for processing natural language, and how these can be used to solve practical problems. |