gychengWork like you don't need money,Love like you've never been hurt,And dance like no one's watching.北京 海淀区 感兴趣的主题: 机器学习 信息安全 推荐系统 数据挖掘 话剧 美剧 monologue 心理学3个粉丝 |
gycheng 评论了课程: Networks, Crowds and Markets 2014-05-20 19:20 证书妥妥的拿到了,其实没什么太多可写的,就随便写几句留念吧。先坦白这门课,我是冲着Jon Kleinberg去听的。
|
gycheng 评论了课程: Introduction to Recommender Systems 2014-01-15 20:02 明尼苏达大学是最早开始推荐系统研究的几所学校之一。还有那个鼎鼎大名的数据集Movielens也是出自这里,实际上课程所有编程作业的数据集也是取自Movielens系统,只不过这次用户和评分来源于上课的学生在第一次课后的打分。
|
gycheng 评论了课程: Learn to Program: The Fundamentals 2014-01-15 16:41 对于计算机专业的孩纸来说,很明显这是门水课。当初选这门的动机是想认真地从头学一下python,算是顺利达成目标,只是内容有些浅,而且老师们完全无意重开高一阶的课程,只是说有兴趣的可以去看以前的课程,这个有点儿遗憾。
|
Algorithms, Part I (CourseraArchive) 6 个评论 关注 开始时间: 04/22/2022 持续时间: 6 weeks 主页: https://www.coursera.org/course/algs4partI 简介: This course covers the essential information that every serious programmer needs to know about algorithms and data structures, with emphasis on applications and scientific performance analysis of Java implementations. Part I covers basic iterable data types, sorting, and searching algorithms. |
Mathematical Biostatistics Boot Camp (CourseraArchive) 2 个评论 关注 开始时间: 04/22/2022 持续时间: 7 weeks 主页: https://www.coursera.org/course/biostats 简介: This class presents the fundamental probability and statistical concepts used in elementary data analysis. It will be taught at an introductory level for students with junior or senior college-level mathematical training including a working knowledge of calculus. A small amount of linear algebra and programming are useful for the class, but not required. |
Computing for Data Analysis (CourseraArchive) 7 个评论 关注 开始时间: 04/22/2022 持续时间: 4 weeks 主页: https://www.coursera.org/course/compdata 简介: This course is about learning the fundamental computing skills necessary for effective data analysis. You will learn to program in R and to use R for reading data, writing functions, making informative graphs, and applying modern statistical methods. |
Computational Methods for Data Analysis (CourseraArchive) 1 个评论 关注 开始时间: 04/22/2022 持续时间: 10 weeks 主页: https://www.coursera.org/course/compmethods 简介: Exploratory and objective data analysis methods applied to the physical, engineering, and biological sciences.
|
Artificial Intelligence Planning (CourseraArchive) 1 个评论 关注 开始时间: 04/22/2022 持续时间: 7 weeks 主页: https://www.coursera.org/course/aiplan 简介: The course aims to provide a foundation in artificial intelligence techniques for planning, with an overview of the wide spectrum of different problems and approaches, including their underlying theory and their applications. |
Algorithms, Part II (CourseraArchive) 5 个评论 关注 开始时间: 04/22/2022 持续时间: 6 weeks 主页: https://www.coursera.org/course/algs4partII 简介: This course covers the essential information that every serious programmer needs to know about algorithms and data structures, with emphasis on applications and scientific performance analysis of Java implementations. |
Algorithms: Design and Analysis, Part 1 (CourseraArchive) 5 个评论 关注 开始时间: 04/22/2022 持续时间: 6 weeks 主页: https://www.coursera.org/course/algo 简介: In this course you will learn several fundamental principles of algorithm design: divide-and-conquer methods, graph algorithms, practical data structures (heaps, hash tables, search trees), randomized algorithms, and more. |
Algorithms: Design and Analysis, Part 2 (CourseraArchive) 4 个评论 关注 开始时间: 04/22/2022 持续时间: 6 weeks 主页: https://www.coursera.org/course/algo2 简介: In this course you will learn several fundamental principles of advanced algorithm design: greedy algorithms and applications; dynamic programming and applications; NP-completeness and what it means for the algorithm designer; the design and analysis of heuristics; and more. |
Machine Learning (CourseraArchive) 29 个评论 关注 开始时间: 04/22/2022 持续时间: Unknown 主页: https://www.coursera.org/course/ml 简介: Learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. |
機器學習基石 (Machine Learning Foundations) (CourseraArchive) 10 个评论 关注 开始时间: 04/22/2022 持续时间: 8 weeks 主页: https://www.coursera.org/course/ntumlone 简介: Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. The course teaches the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。本課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。] |