Tandy小猪

机器学习入门中。。。

上海 长宁区

1个粉丝

Tandy小猪 的课程评论

更多评论

Tandy小猪 关注的课程

Introduction to Recommender Systems (Coursera) 3 个评论 关注

开始时间: 待定 持续时间: Unknown

主页: https://www.coursera.org/course/recsys

简介: This course introduces the concepts, applications, algorithms, programming, and design of recommender systems--software systems that recommend products or information, often based on extensive personalization. Learn how web merchants such as Amazon.com personalize product suggestions and how to apply the same techniques in your own systems!

Neural Networks for Machine Learning (Coursera) 5 个评论 关注

开始时间: 待定 持续时间: 8 weeks

主页: https://www.coursera.org/course/neuralnets

简介: Learn about artificial neural networks and how they're being used for machine learning, as applied to speech and object recognition, image segmentation, modeling language and human motion, etc. We'll emphasize both the basic algorithms and the practical tricks needed to get them to work well.

An Introduction to Interactive Programming in Python (Coursera) 5 个评论 关注

开始时间: 待定 持续时间: Unknown

主页: https://www.coursera.org/course/interactivepython

简介: This course is designed to be a fun introduction to the basics of programming in Python. Our main focus will be on building simple interactive games such as Pong, Blackjack and Asteroids.

StatLearning: Statistical Learning (Stanford Online) 3 个评论 关注

开始时间: 01/20/2014 持续时间: 未知

主页: https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about

简介: This is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical).

CVX101: Convex Optimization (Stanford Online) 1 个评论 关注

开始时间: 01/20/2014 持续时间: 未知

主页: https://class.stanford.edu/courses/Engineering/CVX101/Winter2014/about

简介: This course concentrates on recognizing and solving convex optimization problems that arise in applications. The syllabus includes: convex sets, functions, and optimization problems; basics of convex analysis; least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems; optimality conditions, duality theory, theorems of alternative, and applications; interior-point methods; applications to signal processing, statistics and machine learning, control and mechanical engineering, digital and analog circuit design, and finance.

更多课程