周躜

北京 朝阳区

感兴趣的主题: 流式计算 实时计算 数据分析 机器学习 推荐系统

1个粉丝

周躜 的课程评论

更多评论

周躜 关注的课程

Introduction to Recommender Systems (Coursera) 3 个评论 关注

开始时间: 待定 持续时间: Unknown

主页: https://www.coursera.org/course/recsys

简介: This course introduces the concepts, applications, algorithms, programming, and design of recommender systems--software systems that recommend products or information, often based on extensive personalization. Learn how web merchants such as Amazon.com personalize product suggestions and how to apply the same techniques in your own systems!

StatLearning: Statistical Learning (Stanford Online) 3 个评论 关注

开始时间: 01/20/2014 持续时间: 未知

主页: https://class.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about

简介: This is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical).

機器學習基石 (Machine Learning Foundations) (Coursera) 10 个评论 关注

开始时间: 09/08/2015 持续时间: 8 weeks

主页: https://www.coursera.org/course/ntumlone

简介: Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. The course teaches the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。本課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。]

CVX101: Convex Optimization (Stanford Online) 1 个评论 关注

开始时间: 01/20/2014 持续时间: 未知

主页: https://class.stanford.edu/courses/Engineering/CVX101/Winter2014/about

简介: This course concentrates on recognizing and solving convex optimization problems that arise in applications. The syllabus includes: convex sets, functions, and optimization problems; basics of convex analysis; least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems; optimality conditions, duality theory, theorems of alternative, and applications; interior-point methods; applications to signal processing, statistics and machine learning, control and mechanical engineering, digital and analog circuit design, and finance.

機器學習技法 (Machine Learning Techniques) (Coursera) 2 个评论 关注

开始时间: 11/10/2015 持续时间: 8 weeks

主页: https://www.coursera.org/course/ntumltwo

简介: The course extends the fundamental tools in "Machine Learning Foundations" to powerful and practical models by three directions, which includes embedding numerous features, combining predictive features, and distilling hidden features. [這門課將先前「機器學習基石」課程中所學的基礎工具往三個方向延伸為強大而實用的工具。這三個方向包括嵌入大量的特徵、融合預測性的特徵、與萃取潛藏的特徵。]

Parallel, Concurrent, and Distributed Programming in Java Specialization (Coursera专项课程) 0 个评论 关注

开始时间: 08/27/2018 持续时间: Unknown

主页: https://www.coursera.org/specializations/pcdp

简介: Java并行,并发和分布式编程专项课程系列(Parallel, Concurrent, and Distributed Programming in Java Specialization),这个系列包含3个子课程,分别是Java并行编程,Java并发编程和Java分布式编程,感兴趣的同学可以关注:Boost Your Programming Expertise with Parallelism-Learn the fundamentals of parallel, concurrent, and distributed programming.

更多课程