BigDreamRewake

广东 广州

1个粉丝

BigDreamRewake 的课程评论

更多评论

BigDreamRewake 关注的课程

Algorithms: Design and Analysis, Part 2 (Coursera) 4 个评论 关注

开始时间: 03/16/2015 持续时间: 6 weeks

主页: https://www.coursera.org/course/algo2

简介: In this course you will learn several fundamental principles of advanced algorithm design: greedy algorithms and applications; dynamic programming and applications; NP-completeness and what it means for the algorithm designer; the design and analysis of heuristics; and more.

機器學習基石 (Machine Learning Foundations) (Coursera) 10 个评论 关注

开始时间: 09/08/2015 持续时间: 8 weeks

主页: https://www.coursera.org/course/ntumlone

简介: Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. The course teaches the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。本課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。]

Pattern Discovery in Data Mining (Coursera) 1 个评论 关注

开始时间: 02/09/2015 持续时间: 4 weeks

主页: https://www.coursera.org/course/patterndiscovery

简介: Learn the basic concepts of data mining and dive deep into pattern discovery methods and their applications.

Cloud Computing Concepts: Part 2 (Coursera) 1 个评论 关注

开始时间: 03/16/2015 持续时间: 5 weeks

主页: https://www.coursera.org/course/cloudcomputing2

简介: Learn core distributed computing concepts that underlie today’s and tomorrow’s cloud computing systems.

Mining Massive Datasets (Coursera) 1 个评论 关注

开始时间: 09/12/2015 持续时间: 7 weeks

主页: https://www.coursera.org/course/mmds

简介: This class teaches algorithms for extracting models and other information from very large amounts of data. The emphasis is on techniques that are efficient and that scale well.

Introduction to Big Data with Apache Spark (edX) 1 个评论 关注

开始时间: 待定 持续时间: 5 weeks

主页: https://www.edx.org/course/introduction-big-data-apache-spark-uc-berkeleyx-cs100-1x

简介: Learn how to apply data science techniques using parallel programming in Apache Spark to explore big (and small) data.

更多课程