Model Thinking

开始时间: 10/05/2015 持续时间: 10 weeks

所在平台: Coursera

课程类别: 经济与金融

大学或机构: University of Michigan(美国密歇根大学)

授课老师: Scott E. Page

   

课程主页: https://www.coursera.org/course/modelthinking

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论: 3 个评论

评论课程        关注课程

课程详情

We live in a complex world with diverse people, firms, and governments whose behaviors aggregate to produce novel, unexpected phenomena. We see political uprisings, market crashes, and a never ending array of social trends. How do we make sense of it? Models. Evidence shows that people who think with models consistently outperform those who don't. And, moreover people who think with lots of models outperform people who use only one. Why do models make us better thinkers? Models help us to better organize information - to make sense of that fire hose or hairball of data (choose your metaphor) available on the Internet. Models improve our abilities to make accurate forecasts. They help us make better decisions and adopt more effective strategies. They even can improve our ability to design institutions and procedures. In this class, I present a starter kit of models: I start with models of tipping points. I move on to cover models explain the wisdom of crowds, models that show why some countries are rich and some are poor, and models that help unpack the strategic decisions of firm and politicians. The models covered in this class provide a foundation for future social science classes, whether they be in economics, political science, business, or sociology. Mastering this material will give you a huge leg up in advanced courses. They also help you in life. Here's how the course will work. For each model, I present a short, easily digestible overview lecture. Then, I'll dig deeper. I'll go into the technical details of the model. Those technical lectures won't require calculus but be prepared for some algebra. For all the lectures, I'll offer some questions and we'll have quizzes and even a final exam. If you decide to do the deep dive, and take all the quizzes and the exam, you'll receive a certificate of completion. If you just decide to follow along for the introductory lectures to gain some exposure that's fine too. It's all free. And it's all here to help make you a better thinker!

课程评论(3条)

0

ffffffoouddddd 2013-06-14 07:51 0 票支持; 0 票反对

这位老师说话像机关枪一样,字幕里面全是 [inaudible]。我觉得这门课程还是比较有挑战性,至少在没看视频前都不会做题。你知道有些课程总喜欢讲一些显而易见的东西。

4

wzyer 2013-06-05 19:16 4 票支持; 0 票反对

我觉得这门课适合这样的同学:1. 想拓展知识面,锻炼思维能力,不大喜欢复杂数学的同学。2.想入门MOOC的同学。

Model Thinking应该算是我在Coursera上完成的第一门课。课程的内容不算难,但“第一”这个词本身就意味着你需要去打破一些固有的东西,比如你习惯的时间安排,你的休闲娱乐等等。当时上课的时候我还拉了几个人和我一起上,最后只有我一个人坚持下来了,还坚持到了现在,成为了习惯。因此,我觉得不仅想拓宽知识面的同学应该选这门课,对于那些想进入mooc又不知道如何下手的同学,这也是一个很好的起点——它是普及性的,不需要太多背景知识;它不算难,花不了你多少时间;而且,它还挺有意思的。

这门课的内容很杂,从种族隔离到排兵布阵,你都能在这里找到合适的模型。而课程的内容又全围绕着模型与思维这个主题,数学工具的使用被降低到了可以忽略的程度。即使一些在专业领域中需要复杂的微分方程才可以描述和计算的模型,在这里只需要一些简单的代数运算就能得出结论。考虑到大多数人不喜欢干涩的理论,这门课在理论与实际应用之间选取了一个较好的平衡点,每一个概念都有理论基础与应用实例。不过可能是考虑到视频时长,应用实例讲的有点少,有点浅,这是比较遗憾的地方。毕竟思维与模型这个主题,如果不关注理论模型,那就一定要关注实际应用,否则价值便会大打折扣。

从课程形式来说,每周两个主题,每个主题6~7段视频,每段视频7分钟左右。这是我认为当前Coursera平台上最佳的课程组织方式。容易吸引注意力,又不会过于冗长。适时穿插的视频中提问,也是放松的好时候。不过老师讲课语速偏快,生动有趣的演示不多,这也会影响一定的学习效果。

作业和考试是我认为MOOC最重要的组成部分,没有之一。否则MOOC就失去了存在意义,沦为传统公开课了。这门课的作业以及考试都是由一些选择和填空组成。这并不是我赞赏的方式,但是对于这种普及性的课程,哪种考核方式最好确实也是个需要讨论的问题。就这门课来说,作业和考试难度适中,想全拿满分还是需要一些努力的。只想拿证书的话就很容易了。

最后说说老师,Scott E Page。他是研究社会学复杂系统的,所以课程中的很多实例都取自社会现象,与现实的结合很紧密。但实话实说,我对于这个领域知之甚少。我的一个简单的判断老师牛或不牛的办法,就是查查wiki上有没有专属他的页面。很幸运,google的第二个条目就是他的wiki页面。所以,想上课的尽可以打消顾虑,来听听就好了。

0

wzyer 2013-05-17 09:25 0 票支持; 0 票反对

个人觉得不错,不过肯定有人会觉得它简单。怎么说呢,我觉得作为扩大知识面的课的话,这门课做的已经非常不错了。至少我了解了很多新鲜东西。

Deep Learning Specialization on Coursera

课程简介

In this class, you will learn how to think with models and use them to make sense of the complex world around us.

课程标签

模型 模型思维 模型思维介绍 模型思维导论 密歇根大学 博弈论 经济学 囚徒困境

71人关注该课程

主题相关的课程

Calculus One 关注

Organizational Analysis 关注

Instructional Methods in Health Professions Education 关注

Programmed cell death 关注

关注

MOS Transistors 关注

Analyzing the Universe 关注

Bioelectricity: A Quantitative Approach 关注

Networks Illustrated: Principles without Calculus 关注

关注