Introduction à la théorie de Galois

开始时间: 11/03/2014 持续时间: 11 weeks

所在平台: Coursera

课程类别: 数学

大学或机构: École normale supérieure( 高等师范学校)

授课老师: Yves Laszlo Olivier Debarre

   

课程主页: https://www.coursera.org/course/introgalois

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论:没有评论

第一个写评论        关注课程

课程详情

Le thème général de cette théorie est l'étude des racines d'un polynôme et concerne en particulier la possibilité de les exprimer à partir des coefficients de ce polynôme. Evariste Galois considère les symétries de ces racines et associe ainsi à ce polynôme un groupe de permutations de ses racines, que l'on appelle maintenant son groupe de Galois. Il dégage à cette occasion pour la première fois, dans ce cadre, la notion de groupe, maintenant omniprésente en mathématiques. Son étude lui permet d'expliquer pourquoi les racines d'une équation prise au hasard ne s'expriment en général pas par des formules algébriques faisant intervenir ses coefficients à partir du degré 5, un résultat démontré auparavant par Abel. Plus généralement, l'étude du groupe de Galois du polynôme permet de dire exactement quand une telle formule existe. C'est ce que l'on appelle la correspondance de Galois : elle relie d'une part la théorie des corps, d'autre part la théorie des groupes.

Ce cours expliquera cette théorie en n'utilisant que des résultats de base d'algèbre linéaire. Nous étudierons d'un côté la théorie des corps, c'est-à-dire la façon dont les corps s'emboîtent les uns dans les autres, en introduisant la notion de nombre algébrique (essentiellement les racines de polynômes). D'un autre côté, nous introduirons les éléments nécessaires à l'étude des groupes de permutations. Cela nous permettra d'expliquer la théorie de Galois, non seulement dans son cadre d'origine, c'est-à-dire quand les coefficients du polynôme sont des nombres entiers, mais aussi dans un cadre plus général, par exemple lorsqu'on réduit ces coefficients modulo un nombre premier p.

Le cours culminera avec une comparaison des groupes de Galois dans ces deux situations (« entière » et après réduction modulo p), fournissant ainsi un outil de calcul puissant de ces groupes.

Ce cours est l'occasion d'aborder des notions d'algèbre variées, essentielles dans de nombreux domaines des mathématiques, de manière très simple pour très rapidement aboutir à des résultats tout à fait remarquables. Nous n'avons pas cherché la généralité maximale mais au contraire à aller rapidement à l'essentiel en utilisant le minimum de formalisme abstrait. Le MOOCueur intéressé sera alors armé pour aller plus loin, notamment grâce à la bibliographie ou à des cours plus avancés.

 



课程大纲


  1. Introduction : description du problème et quelques résultats sur les polynômes d'une variable comme échauffement.
  2. Extensions de corps : algébricité, corps algébriquement clos, lemme de l'élément primitif.
  3. Polynôme minimal, éléments conjugués.
  4. Corps fini : Frobenius, automorphismes, extensions de corps finis.
  5. Théorie des groupes I : résultats de base, ordre d’un élément, théorème de Lagrange.
  6. Correspondance de Galois : lemme d'Artin, groupes de Galois, correspondance de Galois.
  7. Théorie des groupes II : groupes résolubles, non résolubilité du groupe symétrique Sn pour n plus grand ou égal à 5.
  8. Cyclotomie I : extension cyclotomique générale, théorie de Kummer
  9. Théorèmes de résolubilité de Galois : critère de résolubilité, théorème de Galois en degré p
  10. Réduction mod p : calcul de groupes de Galois de polynômes à coefficients entiers par réduction modulo p
  11. Compléments : Cyclotomie sur Q (grâce à la réduction modulo p) et autres applications

 




课程评论(0条)

欢迎关注我们的公众号

NLPJob

课程简介

Le cours expose la théorie de Galois, du classique critère de non-résolubilité des équations polynomiales aux méthodes plus avancées de calcul de groupes de Galois par réduction modulo un nombre premier.

课程标签

巴黎高等师范学院 巴黎高师

0人关注该课程

主题相关的课程