Computational Investing, Part I

开始时间: 待定 持续时间: Unknown

所在平台: Coursera

课程类别: 计算机科学

大学或机构: Georgia Institute of Technology(佐治亚理工学院)

   

课程主页: https://www.coursera.org/course/compinvesting1

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论:没有评论

第一个写评论        关注课程

课程详情

Overview
Why do the prices of some companies’ stocks seem to move up and down together while others move separately? What does portfolio “diversification” really mean and how important is it? What should the price of a stock be? How can we discover and exploit the relationships between equity prices automatically? We’ll examine these questions, and others, from a computational point of view. You will learn many of the principles and algorithms hedge funds and investment professionals use to maximize return and reduce risk in equity portfolios.

Topics
We start with a tour of the mathematics and statistics that underlie equity price changes, and the relationships between different groups of equities. We’ll review the most important economic theories of investing and how to create programs that take advantage of them. We’ll look at the data needed to do this, and how to manipulate it effectively. Take a look at the course syllabus here.

Important note: This is a project oriented course involving Python programming in a Unix environment.

Be sure this course is right for you!
This course is intended for folks who have a strong programming background, but who are new to finance and investing.  Check out the two links below to see if the course is a good match.

  • Take a look at the course syllabus here.
  • Take a look at what other students thought of the course here.
Course options
You can enroll in the course in several ways:

  • Regular enrollment. In this track you are expected to watch the videos and complete the assignments.
  • Signature track: This is a brand new option offered by Coursera. More information below.
Outcomes for regular and signature tracks
At the end of the course you will have created a working market simulator that you can use to test your own investing strategies.  You will understand the basic principles of Modern Portfolio Theory and Active Portfolio Management.

Workload
On average you can expect to spend up to 8 to 12 hours per week on programming.

课程大纲

Please take a look at the course syllabus here.

课程评论(0条)

Deep Learning Specialization on Coursera

课程简介

Find out how modern electronic markets work, why stock prices change in the ways they do, and how computation can help our understanding of them.  Build algorithms and visualizations to inform investing practice.

课程标签

投资 投资理财 计算投资 量化投资 计算投资学 理财投资 佐治亚理工学院 金融投资 金融

34人关注该课程

主题相关的课程

Automata 关注

关注

Introduction to Mathematical Thinking 关注

English Composition I: Achieving Expertise 关注

Internet History, Technology, and Security 关注

Networks: Friends, Money, and Bytes 关注

关注

An Introduction to Financial Accounting 关注

Fundamentals of Personal Financial Planning 关注

Design: Creation of Artifacts in Society 关注