Analytic Combinatorics

开始时间: 11/06/2015 持续时间: 6 weeks

所在平台: Coursera

课程类别: 数学

大学或机构: Princeton University(普林斯顿大学)

授课老师: Robert Sedgewick

   

课程主页: https://www.coursera.org/course/ac

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论:没有评论

第一个写评论        关注课程

课程详情

Analytic Combinatorics is based on formal methods for deriving functional relationships on generating functions and asymptotic analysis treating those functions as functions in the complex plane. This course covers the symbolic method for defining generating functions immediately from combinatorial constructions, then develops methods for directly deriving asymptotic results from those generating functions, using complex asymptotics, singularity analysis, saddle-point asymptotics, and limit laws. The course teaches the precept "if you can specify it, you can analyze it".

课程大纲

Lecture  1  Combinatorial Structures and OGFs
Lecture  2  Labelled Structures and EGFs
Lecture  3  Combinatorial Parameters and MGFs
Lecture  4  Complex Analysis, Rational and Meromorphic Asymptotics
Lecture  5  Applications of Rational and Meromorphic Asymptotics
Lecture  6  Singularity Analysis of Generating Functions
Lecture  7  Applications of Singularity Analysis
Lecture  8  Saddle-Point Asymptotics

课程评论(0条)

Deep Learning Specialization on Coursera

课程简介

Analytic Combinatorics teaches a calculus that enables precise quantitative predictions of large combinatorial structures. This course introduces the symbolic method to derive functional relations among ordinary, exponential, and multivariate generating functions, and methods in complex analysis for deriving accurate asymptotics from the GF equations.

课程标签

算法分析 算法 组合分析 组合分析入门 普林斯顿大学

14人关注该课程

主题相关的课程

Analytic Combinatorics, Part I 关注

Analytic Combinatorics, Part II 关注

Analysis of Algorithms 关注

Computational Methods for Data Analysis 关注

Algorithms, Part I 关注

Algorithms, Part II 关注

Network Analysis in Systems Biology 关注

Passion Driven Statistics 关注

Dynamical Modeling Methods for Systems Biology 关注

Algebra 关注