Reinforcement Learning Specialization

开始时间: 02/22/2020 持续时间: Unknown

所在平台: Coursera专项课程

课程类别: 计算机科学

大学或机构: CourseraNew



Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.


第一个写评论        关注课程


The Reinforcement Learning Specialization consists of 4 courses exploring the power of adaptive learning systems and artificial intelligence (AI). Harnessing the full potential of artificial intelligence requires adaptive learning systems. Learn how Reinforcement Learning (RL) solutions help solve real-world problems through trial-and-error interaction by implementing a complete RL solution from beginning to end. By the end of this Specialization, learners will understand the foundations of much of modern probabilistic artificial intelligence (AI) and be prepared to take more advanced courses or to apply AI tools and ideas to real-world problems. This content will focus on “small-scale” problems in order to understand the foundations of Reinforcement Learning, as taught by world-renowned experts at the University of Alberta, Faculty of Science. The tools learned in this Specialization can be applied to game development (AI), customer interaction (how a website interacts with customers), smart assistants, recommender systems, supply chain, industrial control, finance, oil & gas pipelines, industrial control systems, and more.

强化学习专业化:强化学习专业化包含4门课程,探讨自适应学习系统和人工智能(AI)的强大功能。 充分利用人工智能的潜力需要自适应学习系统。了解强化学习(RL)解决方案如何通过反复尝试和错误互动,通过从头到尾实施一个完整的RL解决方案来帮助解决实际问题。 到本专业课程结束时,学习者将了解现代概率人工智能(AI)的基础,并准备参加更高级的课程或将AI工具和思想应用于实际问题。该内容将重点关注“小规模”问题,以了解强化学习的基础,这是由阿尔伯塔大学理学院的世界知名专家教授的。 在本专业知识中学习的工具可以应用于游戏开发(AI),客户互动(网站与客户互动的方式),智能助手,推荐系统,供应链,工业控制,金融,石油和化工。天然气管道,工业控制系统等。


Fundamentals of Reinforcement Learning
Sample-based Learning Methods
Prediction and Control with Function Approximation
A Complete Reinforcement Learning System (Capstone)





加拿大阿尔伯塔大学的强化学习专项课程系列(Reinforcement Learning Specialization), 该系列包含4门子课程,涵盖强化学习基础、基于样本的学习方法、预测与控制、完整的强化系统实践,感兴趣的同学可以关注:Master the Concepts of Reinforcement Learning. Implement a complete RL solution and understand how to apply AI tools to solve real-world problems.


强化学习 强化学习基础 强化学习概念 强化学习实现