Probabilistic Graphical Models Specialization

开始时间: 06/15/2019 持续时间: Unknown

所在平台: Coursera专项课程

课程类别: 计算机科学

大学或机构: CourseraNew

   

课程主页: https://www.coursera.org/specializations/probabilistic-graphical-models

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论:没有评论

第一个写评论        关注课程

课程详情

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.

课程大纲

Probabilistic Graphical Models 1: Representation
Probabilistic Graphical Models 2: Inference
Probabilistic Graphical Models 3: Learning

课程评论(0条)

欢迎关注我们的公众号

NLPJob

课程简介

斯坦福大学 Daphne Koller 教授的概率图模型专项课程系列(Probabilistic Graphical Models Specialization),作为Coursera上最早的几门课程之一,这门概率图模型课程的相当有难度,完成作业拿到证书还是很有挑战的,感兴趣的同学可以关注:Probabilistic Graphical Models-Master a new way of reasoning and learning in complex domains

课程标签

概率图模型 概率图模型公开课 概率图模型课程 概率图模型专项课程 PGM 图模型 机器学习 斯坦福大学 概率模型 贝叶斯 贝叶斯网络 马尔可夫 马尔可夫网络 条件随机场 CRF 马尔可夫链 蒙特卡罗 马尔可夫链蒙特卡罗

24人关注该课程

主题相关的课程