Practical Predictive Analytics: Models and Methods

开始时间: 待定 持续时间: Unknown

所在平台: Coursera

课程类别: 其他类别

大学或机构: CourseraNew

   

课程主页: https://www.coursera.org/learn/predictive-analytics

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论:没有评论

第一个写评论        关注课程

课程详情

Statistical experiment design and analytics are at the heart of data science. In this course you will design statistical experiments and analyze the results using modern methods. You will also explore the common pitfalls in interpreting statistical arguments, especially those associated with big data. Collectively, this course will help you internalize a core set of practical and effective machine learning methods and concepts, and apply them to solve some real world problems. Learning Goals: After completing this course, you will be able to: 1. Design effective experiments and analyze the results 2. Use resampling methods to make clear and bulletproof statistical arguments without invoking esoteric notation 3. Explain and apply a core set of classification methods of increasing complexity (rules, trees, random forests), and associated optimization methods (gradient descent and variants) 4. Explain and apply a set of unsupervised learning concepts and methods 5. Describe the common idioms of large-scale graph analytics, including structural query, traversals and recursive queries, PageRank, and community detection

课程大纲

Learn the basics of statistical inference, comparing classical methods with resampling methods that allow you to use a simple program to make a rigorous statistical argument. Motivate your study with current topics at the foundations of science: publication bias and reproducibility.

课程评论(0条)

Deep Learning Specialization on Coursera

课程简介

Statistical experiment design and analytics are at the heart of data science. In this course you wi

课程标签

0人关注该课程

主题相关的课程