Machine Learning: Clustering & Retrieval

开始时间: 06/11/2018 持续时间: Unknown

所在平台: Coursera

课程类别: 计算机科学

大学或机构: CourseraNew

   

课程主页: https://www.coursera.org/learn/ml-clustering-and-retrieval

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论:没有评论

第一个写评论        关注课程

课程详情

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python.

课程大纲

Clustering and retrieval are some of the most high-impact machine learning tools out there. Retrieval is used in almost every applications and device we interact with, like in providing a set of products related to one a shopper is currently considering, or a list of people you might want to connect with on a social media platform. Clustering can be used to aid retrieval, but is a more broadly useful tool for automatically discovering structure in data, like uncovering groups of similar patients.

This introduction to the course provides you with an overview of the topics we will cover and the background knowledge and resources we assume you have.

课程评论(0条)

Deep Learning Specialization on Coursera

课程简介

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you w

课程标签

机器学习 聚类 检索 相似度检索 机器学习课程 机器学习专项课程 华盛顿大学 华盛顿大学机器学习

1人关注该课程

主题相关的课程