Bayesian Statistics: Techniques and Models

开始时间: 10/17/2020 持续时间: Unknown

所在平台: Coursera

课程类别: 数学

大学或机构: CourseraNew

   

课程主页: https://www.coursera.org/learn/mcmc-bayesian-statistics

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论:没有评论

第一个写评论        关注课程

课程详情

This is the second of a two-course sequence introducing the fundamentals of Bayesian statistics. It builds on the course Bayesian Statistics: From Concept to Data Analysis, which introduces Bayesian methods through use of simple conjugate models. Real-world data often require more sophisticated models to reach realistic conclusions. This course aims to expand our “Bayesian toolbox” with more general models, and computational techniques to fit them. In particular, we will introduce Markov chain Monte Carlo (MCMC) methods, which allow sampling from posterior distributions that have no analytical solution. We will use the open-source, freely available software R (some experience is assumed, e.g., completing the previous course in R) and JAGS (no experience required). We will learn how to construct, fit, assess, and compare Bayesian statistical models to answer scientific questions involving continuous, binary, and count data. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. The lectures provide some of the basic mathematical development, explanations of the statistical modeling process, and a few basic modeling techniques commonly used by statisticians. Computer demonstrations provide concrete, practical walkthroughs. Completion of this course will give you access to a wide range of Bayesian analytical tools, customizable to your data.

贝叶斯统计:技术和模型:这是介绍贝叶斯统计基础的两门课程的第二部分。它以“贝叶斯统计:从概念到数据分析”课程为基础,该课程通过使用简单的共轭模型介绍贝叶斯方法。实际数据通常需要更复杂的模型才能得出现实的结论。本课程旨在通过更多通用模型和适合它们的计算技术来扩展我们的“贝叶斯工具箱”。特别是,我们将介绍马尔可夫链蒙特卡洛(MCMC)方法,该方法允许从没有解析解的后验分布中进行采样。我们将使用开源,免费提供的软件R(假定有一定的经验,例如,完成R的上一门课程)和JAGS(无需经验)。我们将学习如何构建,拟合,评估和比较贝叶斯统计模型,以回答涉及连续,二进制和计数数据的科学问题。该课程结合了讲座视频,计算机演示,阅读,练习和讨论板,以创造积极的学习体验。讲座提供了一些基本的数学发展,统计建模过程的解释以及统计学家常用的一些基本建模技术。计算机演示提供了具体而实用的演练。完成本课程后,您将可以使用多种贝叶斯分析工具,这些工具可根据您的数据进行定制。

课程评论(0条)

欢迎关注我们的公众号

NLPJob

课程简介

This is the second of a two-course sequence introducing the fundamentals of Bayesian statistics. It

课程标签

贝叶斯统计

0人关注该课程

主题相关的课程