*开始时间: 02/16/2019
持续时间: Unknown*

所在平台: Coursera 课程类别: 计算机科学 大学或机构: CourseraNew |

课程主页: https://www.coursera.org/learn/algorithmic-thinking-1

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.课程评论：没有评论

Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part course builds on the principles that you learned in our Principles of Computing course and is designed to train students in the mathematical concepts and process of "Algorithmic Thinking", allowing them to build simpler, more efficient solutions to real-world computational problems. In part 1 of this course, we will study the notion of algorithmic efficiency and consider its application to several problems from graph theory. As the central part of the course, students will implement several important graph algorithms in Python and then use these algorithms to analyze two large real-world data sets. The main focus of these tasks is to understand interaction between the algorithms and the structure of the data sets being analyzed by these algorithms. Recommended Background - Students should be comfortable writing intermediate size (300+ line) programs in Python and have a basic understanding of searching, sorting, and recursion. Students should also have a solid math background that includes algebra, pre-calculus and a familiarity with the math concepts covered in "Principles of Computing".

Experienced Computer Scientists analyze and solve computational problems at a level of abstraction t