Accounting Data Analytics with Python

开始时间: 02/20/2021 持续时间: Unknown

所在平台: Coursera

课程类别: 其他类别

大学或机构: CourseraNew

   

课程主页: https://www.coursera.org/learn/accounting-data-analytics-python

Explore 1600+ online courses from top universities. Join Coursera today to learn data science, programming, business strategy, and more.

课程评论:没有评论

第一个写评论        关注课程

课程详情

This course focuses on developing Python skills for assembling business data. It will cover some of the same material from Introduction to Accounting Data Analytics and Visualization, but in a more general purpose programming environment (Jupyter Notebook for Python), rather than in Excel and the Visual Basic Editor. These concepts are taught within the context of one or more accounting data domains (e.g., financial statement data from EDGAR, stock data, loan data, point-of-sale data). The first half of the course picks up where Introduction to Accounting Data Analytics and Visualization left off: using in an integrated development environment to automate data analytic tasks. We discuss how to manage code and share results within Jupyter Notebook, a popular development environment for data analytic software like Python and R. We then review some fundamental programming skills, such as mathematical operators, functions, conditional statements and loops using Python software. The second half of the course focuses on assembling data for machine learning purposes. We introduce students to Pandas dataframes and Numpy for structuring and manipulating data. We then analyze the data using visualizations and linear regression. Finally, we explain how to use Python for interacting with SQL data.

使用Python进行会计数据分析:本课程着重于开发用于组装业务数据的Python技能。它将涵盖与“会计数据分析和可视化简介”中的相同内容,但使用的是更通用的编程环境(适用于Python的Jupyter Notebook),而不是Excel和Visual Basic编辑器。在一个或多个会计数据域(例如,来自EDGAR的财务报表数据,股票数据,贷款数据,销售点数据)的上下文中教授这些概念。 本课程的前半部分从“会计数据分析和可视化简介”的上一个停下来的地方开始:在集成开发环境中使用以自动化数据分析任务。我们讨论了如何在Jupyter Notebook(一种流行的数据分析软件开发环境,如Python和R)的Jupyter Notebook中管理代码和共享结果。然后,我们回顾了一些基本的编程技能,例如使用Python软件的数学运算符,函数,条件语句和循环。 本课程的后半部分着重于为机器学习目的组装数据。我们向学生介绍Pandas数据框和Numpy,以构造和处理数据。然后,我们使用可视化和线性回归分析数据。最后,我们解释了如何使用Python与SQL数据进行交互。

课程大纲

MODULE 1: FOUNDATIONS
MODULE 2: INTRODUCTION TO PYTHON
MODULE 3: INTRODUCTION TO PYTHON PROGRAMMING
MODULE 4: PYTHON PROGRAMMING
MODULE 5: DATA ANALYSIS WITH PYTHON
MODULE 6: INTRODUCTION TO VISUALIZATION IN PYTHON
MODULE 7: PRODUCTION DATA ANALYTICS
MODULE 8: INTRODUCTION TO DATABASES IN PYTHON

课程评论(0条)

Coursera Plus banner featuring three learners and university partner logos

课程标签

0人关注该课程

主题相关的课程