Artificial Intelligence for Robotics

开始时间: 随时 持续时间: 自主

所在平台: Udacity

课程类别: 计算机科学

大学或机构: Udacity Self

   

课程主页: https://www.udacity.com/course/cs373

课程评论: 2 个评论

评论课程        关注课程

课程详情

Learn how to program all the major systems of a robotic car from the leader of Google and Stanford's autonomous driving teams. This class will teach you basic methods in Artificial Intelligence, including: probabilistic inference, planning and search, localization, tracking and control, all with a focus on robotics. Extensive programming examples and assignments will apply these methods in the context of building self-driving cars.

Lesson 1: Basics of probability
Monte-Carlo localization

Lesson 2: Gaussians and continuous probability
Tracking other cars with Kalman filters

Lesson 3: Car localization with particle filters
Lesson 4: Planning and search
Determining where to drive with A* search

Lesson 5: Controls
Controlling steering and speeds with PID

Lesson 6: Putting it all together
Programming a self-driving car

课程评论(2条)

0

大吃一惊异 2014-06-06 12:08 0 票支持; 0 票反对

这是我上的第一个mooc。对mobile robot programming的主要环节做了介绍。最大的收获就是能跟从事robotics research的基友have an intelligent conversation。可惜后来也没有做机器人的项目,所以我大概是这门课不合格的学生吧。

上完这个课之后我正好考出了驾照。第一次开车的时候突然想起了robotic car为了save cost从来不左转,然后我就没有左转一路开回家了orz

0

wzyer 2013-05-22 15:46 0 票支持; 0 票反对

课程内容确实很偏无人驾驶车。所有的主题都是和无人驾驶车相关的。所以不算是一个AI入门的好课程。不过从移动机器人AI的主题来讲,这门课还是非常有意思的。答疑视频中也会聊到一些更深入的话题。不过总体来讲,深入的话题不多。

课程简介

This course will cover probabilistic inference, planning and search, localization, tracking and control, all with a focus on robotics.

课程标签

人工智能 机器人 无人驾驶汽车 机器学习 自动驾驶汽车

30人关注该课程

主题相关的课程

Applied Cryptography 关注

Interactive 3D Graphics 关注

Functional Hardware Verification 关注

Design of Computer Programs 关注

Differential Equations in Action 关注

Software Debugging 关注

Software Testing 关注

Algorithms 关注

HTML5 Game Development 关注

Introduction to Theoretical Computer Science 关注